SEG Honorary Lecturer 2019: Heloise Lynn

  • November 19, 2019
  • 11:30 AM - 1:00 PM
  • Tulsa Country Club, 701 N Union Ave, Tulsa, OK 74127

Registration


Registration is closed

GST is hosting the 2019 SEG Honorary Lecturer Heloise Lynn!

The event will be at the Tulsa Country Club, please see the map below for where to park and follow this link for the google maps location: https://goo.gl/maps/hhfDgSrfDV3tEEGj9.


https://seg.org/Education/Lectures/Honorary-Lectures/2019-HL-Lynn

Biography

Lynn

Heloise Bloxsom Lynn is a geophysical consultant and instructor with Petroskills and Nautilus World. She started working in seismic reflection data in 1975, processing U.S. onshore data for Texaco in Houston. Lynn worked for Texaco, Amoco, BP, and then in 1984, she and her husband, Walt, formed Lynn Incorporated. Her consulting experience includes working in North America, Hungary, Qatar, Kuwait, Saudi Arabia, Pakistan, Australia, Thailand, China, and Japan. She specializes in the use of 3D multiazimuth and/or multicomponent data to obtain structure, lithology, porosity, pore fluids, in-situ stress, and aligned porosity (aka natural fractures). She also includes conventional VSP data processed for split-shear waves in these projects because there is nearly always a source-generated S-wave or a near-source mode-converted S-wave, and/or mode-conversions at impedance boundaries. In the fall of 2004, she was the SEG/AAPG Distinguished Lecturer, speaking on “The Winds of Change – anisotropic rocks, their preferred direction of fluid flow, and their associated seismic signatures.” 2014 brought an Honorable Mention, Best Paper, SEG Annual Meeting to H. Lynn, W. Lynn, J. Obilo, V. Agarwall, “Azimuthal prestack depth migration for in-situ stress evaluation, in a fractured carbonate oil reservoir: predrill prediction of instantaneous shut-in pressure gradients.” A 2015 SEG award citation: “Heloise Lynn was presented the Reginald Fessenden Award for her 35-year career of translating the anisotropic behavior of seismic waves into practical applications that allow stress fields, fracture systems, and geomechanical properties to be characterized in targeted rock systems. She has described her research findings in many oral presentations and in 47 published papers that collectively create an invaluable knowledge base for scientists, researchers, students, teachers, and exploration geophysicists.” In 2016, she presented the Geophysical Society of Houston webinar, “Applied Azimuthal Anisotropy - Azimuthal 3D P-P Seismic: Why Bother?” In 2017, she was invited back to present “Basics and Updates on Anisotropy: Azimuthal P-P for Better Imaging, Fractures & Stress Analysis -- Acquisition, Processing & Interpretation.” Both webinars are available through SEG. She earned a BA in geology-math from Bowdoin College, Maine; an MSc in exploration geophysics from Stanford University; and a PhD in geophysics from Stanford University. She is a member of SEG, EAGE, the Geophysical Society of Houston (GSH), AAPG, and SPE.


Summary

Azimuthal(az’l) seismic analyses give rise to better imaged data and insights into the in-situ stress field and the aligned porosity (fractures) that flow fluids. Ignoring azimuthal seismic information, which in the past was quite easy to do, is now inexcusable because of vast improvements in:  (a) platforms to view, map, and analyze az’l prestack or partial stack data; (b) acquisition (more data); and (c)  processing algorithms (e.g., orthorhombic prestack depth migration [PSDM]).

Understanding the past gives insight into today. In 1986, the first “Anisotrophy” session of the SEG Annual Meeting featured five paradigm-shifting Amoco papers and one paper from Stuart Crampin, an early anisotropy pioneer. The Amoco papers documented six years of confidential applied research into shear-wave splitting, as visible in S-wave reflection seismic data. Shear-wave splitting, specifically, the two different shear moduli for vertically propagating S-waves, and more generally, the effects of aligned porosity (vertical penny-shaped cracks or squashed vertical pancake porosity), is the cause of azimuthal variations in seismic measurements. The porosity geometry is the root cause of shear-wave splitting and all azimuthal P-P seismic. The P-wave velocity depends on the bulk modulus and the shear modulus (as influencing various elastic constants): when these moduli vary by azimuth and angle of incidence, then the P-wave velocity varies by azimuth and angle of incidence.

"Geophysical Society of Tulsa (GST)" is a 501(c)3 non-profit organization. Oklahoma, P.O. Box 2784, Tulsa, OK 174101

Powered by Wild Apricot Membership Software